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Density functional approximations for confined classical fluids

Tai-Heui Yoon and Soon-Chul Kim*
Department of Physics, Andong National University, Andong 760-749, Korea

~Received 14 May 1998!

A density functional approximation, which is based on both the density functional Taylor series expansion
of the one-particle direct correlation function and the exact contact value theorem for a hard wall, has been
proposed to study the structural properties of confined classical fluids. The approximation has been applied to
calculate the density profiles of sticky hard-sphere fluids confined in structureless hard walls. The calculated
density profiles have shown that the present approximation compares very well with the results from the
computer simulation. Furthermore, a density functional perturbative approximation, which is based on both the
weighted-density approximation for the repulsive part of potential and the present approximation for the
attractive part of potential, has been developed to predict the density profiles of model fluids with the attractive
part of potential and has been applied to calculate the density profiles of hard-sphere Yukawa fluids near a
planar slit. The calculated results also show that the proposed perturbative approximation is a significant
improvement upon those of the modified version of the Lovett-Mou-Buff-Wertheim, and compares very well
with the computer simulation.@S1063-651X~98!04210-X#

PACS number~s!: 61.20.Gy, 61.20.Ne
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I. INTRODUCTION

The structural properties of fluid confined in special sy
metrical systems have been a subject of long-standing t
retical and practical interest@1,2#. Many theoretical methods
have been proposed to describe the structural propertie
confined model fluids. It is known that the density function
approximations simulate the structural properties of confi
fluids reasonably well compared with the standard integ
equations. However, at the lower temperature the weigh
density approximations fail to describe the structural prop
ties of the real systems with the attractive potential such
confined sticky hard-sphere fluid. Thus, relatively few stu
ies have yet been considered for the structural properties
confined sticky hard-sphere fluid. Jamniket al. @3,4# had
studied the wall-fluid correlations on the basis of the solut
to the Percus-Yevick–Ornstein-Zernike equation to study
density profiles of sticky hard-sphere fluids confined in h
walls. Kim and Suh@5# have recently used the density fun
tional perturbative approximation, which is based on both
hybrid weighted-density approximation of Leidl and Wagn
@6# and the higher-order weighted-density approximation
Denton and Ashcroft@7#, to calculate the density profiles o
confined sticky hard-sphere fluids. They have shown that
Kim-Suh approximation is better than the Choudhury-Gho
approximation@8,9#, which is based on both the higher-ord
weighted-density approximation for the reference term a
the density functional Taylor series expansion of one-part
direct correlation function for the remaining contributio
However, for the strong adhesiveness the agreement with
computer simulation is slightly unsatisfactory. Thus, we h
address these problems and propose a simple density
tional approximation based on the contact value theorem
a hard wall to study the structural properties of confin
sticky hard-sphere fluids.

*Electronic address: sckim@anu.andong.ac.kr
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For model systems with the attractive part of the potent
the most successful class of approximate theories both f
the point of view of numerical accuracy and of intuitive a
peal is the density functional perturbative approximatio
based on the liquid theory. Among many different appro
mations, Kim and Suh@10# have recently developed the de
sity functional perturbative approximation, which can
considered as the extended Choudhury-Ghosh approxima
@8,9#, to study the structural properties of confined mod
fluids. They@10,11# have shown that the proposed appro
mation well describes the structural properties of confin
square-well and hard-sphere Yukawa fluids with the attr
tive potential compared with the computer simulation. In th
approximation, the constant ‘‘B’’ appearing in the density
profile equation is determined to satisfy the equation of s
of a model system. Here, one interesting thing is that
exact contact value theorem for a hard wall can be use
determine the constant ‘‘B’’ appearing in the density func-
tional perturbative approximation. Another is whether or n
the density functional perturbative approximation based
the contact value theorem for a hard wall describes well m
chinery results compared with those of other approximatio

The purpose of the present paper is to develop the den
functional approximation and the density functional pert
bative approximation, which are based on both the den
functional Taylor series expansion of one-particle direct c
relation function and the contact value theorem for a h
wall, to study the density profiles of confined sticky har
sphere and hard-sphere Yukawa fluids. In Sec. II, we prop
the density functional approximation for simple fluids a
the density functional perturbative approximation for mod
fluids with the attractive potential. We apply, in Sec. III, th
proposed approximations to calculate the density profiles
confined sticky hard-sphere and hard-sphere Yukawa flu
and compare their results with those of other approximatio
Finally, we briefly discuss the strengths and weaknesse
the proposed approximations in actual applications.
4541 © 1998 The American Physical Society
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II. THEORY

A. Density functional approximation

In the density functional theory, the grand canonical p
tential V@r# and intrinsic~Helmholtz! free energy functiona
F@r#, both the unique functional of the one-particle dens
r(rW), are related as

V@r#5F@r#1E drW r~rW !@uext~rW !2m#, ~1!

wherem is the equilibrium chemical potential of the syste
and uext(rW) is an external potential@1#. The intrinsic free
energy functionalF@r# can be generally written as the ide
contribution F id@r# plus the excess free energy function
Fex@r# originating from the particle interaction

F@r#5F id@r#1Fex@r#, ~2!

wherebF id@r#5*drW r(rW)$ ln@L3r(rW)#21%, b51/kBT, andL
is the thermal de Broglie wavelength.

The equilibrium particle density distribution of the inho
mogeneous fluid corresponds to the minimum of the gr
canonical potential satisfyingdV@r#/dr(rW)50, which leads
to the Euler-Lagrange equation,m2uext(rW)5dF@r#/dr(rW).
For an inhomogeneous fluid in contact with a homogene
bulk fluid, its chemical potentialm is equal to that of the
homogeneous bulk fluid and hence the Euler-Lagrange e
tion leads to an expression for the density profile equa
given by

lnFr~rW !

rb
G52buext~rW !1c~1!~rW;@r#!2c~1!~rb!, ~3!

where rb is the homogeneous bulk density of the syste
c(1)(rW;@r#) the one-particle direct correlation functio
~DCF! for an inhomogeneous fluid, andc(1)(rb) the one-
particle DCF for a homogeneous bulk fluid@1#.

Since the exact form ofc(1)(rW;@r#) for a model fluid is
unknown, some kinds of approximations must inevitably
introduced. For this, we use the density functional Tay
series expansion of the one-particle DCFc(1)(rW;@r#) with
respect to the bulk densityrb . Then, we obtain

c~1!~rW;@r#!5c~1!~rb!1 (
n52

`
1

~n21!! E dsW¯E d tWc~n!

3~sW, . . . ,tW,rb!@r~rW !2rb#¯@r~ tW !2rb#,~4!

wherec(n)(rW, . . . ,tW,rb) is then-particle DCF of the system
If we retain terms only up to the second order in the den
functional Taylor series expansion, we obtain

c~1!~rW;@r#!5c~1!~rb!1E dsW c~2!~ urW2sWu,rb!@r~sW !2rb#

1
1

2 E dsWE d tW c~3!~rW,sW, tW,rb!@r~sW !2rb#

3@r~ tW !2rb#. ~5!

However, the three-particle DCFc(3)(rW,sW, tW,rb) is not
known so we need an approximation for the three-part
-
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DCF. In the density functional approximation proposed
Rickayzenet al. @12,13#, it appeared that the three-partic
DCF c(3)(rW,sW, tW,rb) is not very sensitive when the separatio
of any two of the coordinates,urW2sWu, is greater than a mo
lecular diameterR. Following the Rickayzen’s argumen
@12,13#, we chose a practically simple form as

c~3!~rW,sW, tW,rb!5BE duW a~ urW2uW u!a~ usW2uW u!a~ u tW2uW u!

~6!

with

a~r !5
6

pR3 uS R

2
2r D , ~7!

where the strengthB is an unknown constant andu(x) the
Heaviside step function. In this case, the density pro
equation becomes, from Eqs.~3!, ~5!, and~6!,

lnFr~rW !

rb
G52buext~rW !1E dsW c~2!~ urW2sWu,rb!@r~sW !2rb#

1
B

2 E dsW a~ urW2sWu!dr~sW !2, ~8!

with

dr~sW !25F E d tW a~ usW2 tWu!@r~ tW !2rb#G2

. ~9!

To determine a constantB, we use the exact contact valu
theorem for a structureless hard wall atz52R/2, whereR is
the diameter of a model fluid.@1# Due to the planar symme
try, the density distribution varies only along thez direction:
r(rW)5r(z). The contact value theorem states that

bP5r~z50!, ~10!

where P is the pressure of the system. For a structurel
planar slit the density profiler(z50) at a hard wall be-
comes, from Eq.~8!,

lnFr~z50!

rb
G5E

0

`

dz8c~2!~z8,rb!@r~z8!2rb#

1
B

2 E
0

`

dz8a~z8!dr~z8!2, ~11!

where c(2)(z,rb)52p*0
`dR Rc(2)(@R21z2#1/2,rb) and

a(z)52p*0
`dR Ra(@R21z2#1/2,rb). Then, Eqs.~10! and

~11! yield

B

2
5

ln~bP/rb!2*0
`dz8 c~2!~z8,rb!@r~z8!2rb#

*0
`dz8 a~z8!dr~z8!2

. ~12!

Taken together, Eqs.~8! and ~12!, constitute the density
profile equation for the density functional approximatio
and provide an exact route to calculating the density profi
of model fluids provided the two-particle DCFc(2)(urW
2sWu,rb) is known. It is noted that in the density function
approximation of Rickayzenet al. @12,13#, the authors had
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used the equation of state,bP52bV(r)/V, for the homo-
geneous phase to determine the constantB appearing in their
approximations.

B. Density functional perturbative approximation

It is generally known that for model systems with an
tractive part of the potential the density functional perturb
tive approximations well describe the structural properties
confined model fluids compared with the standard integ
equations. Following the density functional perturbati
theory, the pair interaction potentialu(r ) of a model fluid
can be divided into the hard-sphere partuhs(r ) and the at-
tractive partuatt(r ) such as

u~r !5uhs~r !1uatt~r !, ~13!

where the attractive partuatt(r ) is treated as the perturbativ
term for a hard-sphere part. Then, the one-particle D
c(1)(rW;@r#) can be written as

c~1!~rW;@r#!5chs
~1!~rW;@r#!1catt

~1!~rW;@r#!, ~14!

where chs
(1)(rW;@r#) and catt

(1)(rW;@r#) denote the one-particle
DCFs corresponding to the hard-sphere and the attrac
contributions, respectively. For a homogeneous fluid,
~14! becomes

c~1!~rb!5chs
~1!~rb!1catt

~1!~rb!, ~15!

sincer(rW)5rb for a homogeneous state. In this approxim
tion, the density profile equation becomes, from Eqs.~3!,
~14!, and~15!,

lnFr~rW !

rb
G52buext~rW !1chs

~1!~rW;@r#!

2chs
~1!~rb!1catt

~1!~rW;@r#!2catt
~1!~rb!. ~16!

As the approximation for an attractive contributio
catt

(1)(rW;@r#), we use the density functional Taylor series e
p

ro

on
ui
e

-
-
f
l

F

ve
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-

-

pansion of the one-particle DCFcatt
(1)(rW;@r#) with respect to

the bulk densityrb and retain terms only up to the secon
order in the density functional Taylor series expansio
Then,catt

(1)(rW;@r#) becomes

catt
~1!~rW;@r#!5catt

~1!~rb!1E dsWcatt
~2!~ urW2sWu,rb!@r~sW !2rb#

1
1

2 E dsWE d tWcatt
~3!~rW,sW, tW,rb!@r~sW !2rb#

3@r~ tW !2rb#. ~17!

Since the exact form of the three-particle DCF correspond
to the attractive contribution is unknown, we chose a sim
form as

catt
~3!~rW,sW, tW,rb!5BE duW a~ urW2uW u!a~ usW2uW u!a~ u tW2uW u!.

~18!

Then, the density profile equation becomes, from Eqs.~6!,
~16!, and~17!,

lnFr~rW !

rb
G52buext~rW !1chs

~1!~rW;@r#!

2chs
~1!~rb!1E dsW catt

~2!~ urW2sWu,rb!@r~sW !2rb#

1
B

2 E dsW a~ urW2sWu!dr~sW !2. ~19!

Since the constantB is still unknown, we use the exac
contact value theorem for a hard wall;bP5r(z50). Then,
the constantB is simply given as, after some manipulation
B/25F ln~bP/rb!2chs
~1!~z50;@r#!1chs

~1!~rb!2E
0

`

dz8 catt
~2!~z8,rb!@r~z8!2rb#G Y F E

0

`

dz8 a~z8!dr~z8!2G , ~20!
of

at

la-

ing
wherecatt
(2)(z,rb)52p*0

`dR Rcatt
(2)(@R21z2#1/2,rb).

Taken together, Eqs.~19! and ~20! constitute the density
profile equation for the density functional perturbative a
proximation. Once again, Eqs.~19! and~20! provide an exact
route to calculate the density profiles of model fluids p
vided chs

(1)(rW;@r#) andcatt
(2)(urW2sWu,rb) are known.

III. RESULTS AND DISCUSSION

A. Sticky hard-sphere fluids in planar slits

As an application of the density functional approximati
proposed in Sec. II A, we consider a sticky hard-sphere fl
confined in structureless planar slits. For a sticky hard-sph
fluid, the intermolecular potentialbu(r ) @14# is given as
-

-

d
re

exp@2bu~r !#5
R

12t
d~r 2R2!1u~r 2R!, ~21!

wheret is the stickiness parameter related to the strength
adhesion and to the temperature of the system,R the diam-
eter of sticky hard sphere, andd(x) Dirac’s delta function.
For a confined sticky hard-sphere fluid, it is known that
lower t values the weighted-density approximations@15#
yield very poor results compared with the computer simu
tion.

Let us consider the fluid confined in planar slits consist
of two walls located atz52R/2 andz5L1R/2, where the
walls are parallel to the plane (x,y,0). In this case, the fluid-
wall interactionbuext(z) is given by a hard core one;
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buext~z!5 H 0
`

0,z,L
otherwise. ~22!

To calculate the density profiles of confined sticky ha
sphere fluids, Baxter’s Percus-Yevick~PY! expression for
the two-particle DCFc(2)(r ,rb) of a sticky hard-sphere fluid
in the homogeneous phase has been used,

c~2!~r ,rb!5F2A02A1S r

RD2
h

2
A0S r

RD 3Gu~R2r !

2
h

12
l2S R

r D u~R2r !1
l

12
d~r 2R2!,

~23!

where h5prbR3/6 is the packing fraction,A05(112h
2j)2/(12h)4, A1523h(21h)212j(117h1h2)

FIG. 1. Density profiles of sticky hard-sphere fluids confined
the gap of withL56R hard walls at different bulk densityrbR3

(50.6 and 0.4) with the adhesivenesst50.5. The open circles are
taken from the computer simulation@4#. The solid lines correspond
to the proposed approximation.

FIG. 2. Same as Fig. 1, but forL53R.
-

2j2(21h)/2(12h)4, j5lh(12h), l56/h@n2(n2

2g)1/2#, n5t1h/(12h), and g5h(21h)/6(12h)2

@14#. To calculate a constantB appearing in Eq.~6!, the
equation of state@16# for a sticky hard-sphere fluid, via th
compressibility equation, has been used

bP

rb

5
11h1h2

~12h!3 2
j~21h!

2~12h!3 1
j3

36h~12h!3 . ~24!

The resulting density profiles for a confined sticky har
sphere fluid with the gap of widthsL56R andL53R have
been displayed againstz/R at two different values of the
bulk densitiesrbR3 ~50.4 and 0.6! in Figs. 1 and 2. As can
be seen from Figs. 1 and 2, for the weak adhesivenest
50.5 the agreement with the present approximation and
computer simulation is excellent.

In Figs. 3 and 4, the calculated results for a sticky ha
sphere fluid confined in a planar wall with gaps ofL56R
andL53R have been displayed. The calculated results sh
that even for the strong adhesivenesst50.2 the present ap
proximation is in excellent agreement with the compu

FIG. 3. Same as Fig. 1, but fort50.2.

FIG. 4. Same as Fig. 1, but forL53R andt50.2.
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simulation. The comparisons with other approximatio
which are the Choudhury-Ghosh@8# and Kim-Suh approxi-
mations@5#, also show that the present approximation is b
ter than the Choudhury-Ghosh and Kim-Suh approximatio
even if we did not display their results in Figs. 3 and 4 f
clarity; at higher densities the Choudhury-Ghosh and K
Suh approximations yield higher values of the fluid dens
near the hard wall compared with the computer simulat
and the disagreement with the computer simulation dete
rates with decreasing thet values. On the other hand, the
results also suggest that for a confined sticky hard-sph
fluid the density functional approximation of Rickayze
et al. @12,13# yields excellent results compared with the co
puter simulation, because in this case the constantB is de-
termined to satisfy the equation of state of the system.

B. Hard-sphere Yukawa fluids near a planar slit

As an application of the density functional perturbati
approximation developed in Sec. II B, we consider a ha
sphere Yukawa fluid near a planar slit@17#. For a hard-
sphere Yukawa fluid, the hard-sphere partuhs(r ) is given as

buhs~r !5 H`
0

r ,s
r .s, ~25!

and the attractive partuatt(r ) is given as

buatt~r !5 H0, r ,s
2beFs exp[2l(r 2s)/s]/ r ], r .s,

~26!

where the parametereF is the depth of the fluid-fluid poten
tial, l the range parameter, ands the diameter of the hard
sphere.

As an approximation for the hard-sphere p
chs

(1)(rW;@r#) appearing in Eq.~19!, we have used the
weighted-density approximation~WDA! of Tarazona@15#,
which is known to give excellent results for a hard-sph
fluid. In the WDA of Tarazona,chs

(1)(rW;@r#) is simply given
as

chs
~1!~rW;@r#!52b f hs@ r̄~rW !#2E dsWr~sW !b f hs8 „r̄~sW !…

dr̄~sW !

dr~rW !
~27!

with

dr̄~sW !

dr~rW !
5

v„urW2sWu,r̄~sW !…

12*d tW r~ tW !v8„usW2 tWu,r̄~sW !…
, ~28!

where f hs(r) is the excess free energy per particle cor
sponding to the hard-sphere system and the prime den
the derivative with respect to the density. The weighted d
sity r̄(rW) appearing in Eq.~27! is assumed as

r̄~sW !5E d tW r~ tW !v@ usW2 tWu,r̄~sW !#, ~29!

wherev(urW2sWu,rb) is the weighting function for the hard
sphere part. As the weighting function, we have here e
ployed a simple expansion
,

t-
s,
r
-
y
n
o-

re

-

-

t

e

-
tes
-

-

v~r ,rb!5v0~r !1v1~r !rb1v2~r !rb
2, ~30!

where detailed expressions are given in Ref.@15#.
As the excess free energy corresponding to the ha

sphere contribution, f hs(r), the quasiexact Carnahan
Starling equation of state has been used;b f hs(r)5h(4
23h)/(12h)2, whereh5hrs3/6 is the packing fraction
@18#. To calculate the two-particle DCFc(2)(urW2sWu,rb) for a
hard-sphere Yukawa fluid, the mean spherical approxima
~MSA! has been used, because the MSA yields quite g
results up to the higher densities

c~2!~r ,rb!

5H 2a2br/s2har3/2s32vs@12exp~2lr /s!#/lr
2v2@cosh~lr /s!21#/@2beFl2exp~l!#, r ,s
beFs exp@2l~r 2s!/s#/r , r .s,

~31!

wherea, b, andv are parameters, which are defined impli
itly @17,19#. As the two-particle DCFchs

(2)(urW2sWu,rb) for a
hard-sphere fluid, we have used an analytic solution of
Percus-Yevick~PY! approximation @20#. To determine a
constantB appearing in Eq.~17!; the bulk pressurebP ~en-
ergy route! for a hard-sphere Yukawa fluid given b
Olivares-Rivaset al. @19,21# has been used. Through the
calculations, the hard-sphere Yukawa potential with a ra
parameterl51.8 has been used to compare with the co
puter simulation.

For a hard-sphere Yukawa fluid near a planar slit, t
types of wall-fluid interactionsbuext(z) have been consid
ered:~i! for a structureless hard wall given as

buext~z!5 H 0,
`,

0,z
z.0, ~32!

and ~ii ! for the wall with an attractive tail

FIG. 5. Density profiles for hard-sphere Yukawa fluids nea
hard wall (rbs350.7 and T* 52.0). The solid lines are for a ratio
eW /eF55. The open circles and dotted lines are from the compu
simulation @19# and the proposed perturbative approximation,
spectively. The dash-dotted lines are the results of LMBW-1@19#.
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buext~z!5 H 0,
2beWexp@2lz/s#,

0,z
z.0. ~33!

The density profiles (rbs350.7 and T* 5kBT/eF
50.2) for hard-sphere Yukawa fluids near a hard wall
displayed in Fig. 5 with the computer simulation@19#. At a
high temperature, the proposed perturbative approxima
shows a reasonably good agreement with the computer s
lation. The comparison with the modified version of t
Lovett-Mou-Buff-Wertheim~LMBW-1! @19# shows that the
proposed perturbative approximation is better than
LMBW-1. It is noted that Yi and Kim@11# have recently
used the density functional perturbative approximati
which is based on both the weighted-density approxima
and the density functional approximation of Rickayzenet al.,
@12#, to study the density profiles of confined hard-sph
Yukawa fluids. The comparison shows that the proposed
turbative approximation yields almost the same results as
Yi-Kim results, even if we did not display their results in th
figures for clarity.

For lower temperatures (T* 51.25 and T* 51.1), ap-
proaching the liquid-vapor transition temperature, the cal
lated results have been displayed in Figs. 6 and 7. The c
parisons with the computer simulation also show
excellent agreement. Furthermore, the density profiles fo

FIG. 6. Density profiles for hard-sphere Yukawa fluids (rbs3

50.7 and T* 51.25). The upper set is for a ratioeW /eF55. The
lower set is for a hard walleW /eF50. The solid and open circle
are from the computer simulation@19#. The solid and dotted lines
are from the proposed perturbative approximation. The dash-do
lines are the results of LMBW-1@19#.
.

e
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e
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attractive Yukawa wall witheW /eF55 have been displayed
in Figs. 5, 6, and 7. As can be seen from Fig. 6 (T*
51.25), the proposed perturbative approximation sho
good agreement with the computer simulation. With incre
ing the temperature, the contact values of the density pro
decrease because of the increase of the attractive wall po
tial. This effect is much the same as that of the hard-sph
fluid near a wall@1#.

In summary, we have here proposed the density fu
tional approximation and the density functional perturbat
approximation, which are based on the exact contact va
theorem for a hard wall, to study the structural properties
sticky hard-sphere and hard-sphere Yukawa fluids confi
in planar slits. The calculated results show that the pres
approximations yield an excellent agreement with the co
puter simulation. Theory presented here can generally
used as a reference system for the study of a bulk sti
hard-sphere fluid and for a perturbative analysis in the st
of a bulk hard-sphere Yukawa fluid. On the other hand,
present approximations can be applied to study the struct
properties of model fluids or binary mixtures confined in
spherical and cylindrical pore. We will leave these proble
to a future study.
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